Endothelial nitric oxide synthase (eNOS), the enzyme that catalyzes the production of NO from the amino acid arginine in endothelial cells, plays a key role in vasoregulation
نویسندگان
چکیده
catalyzes the production of NO from the amino acid arginine in endothelial cells, plays a key role in vasoregulation as well as in other important physiological processes such as angiogenesis. Impaired production of endothelial NO has been associated with hypertension, heart failure, hypercholesterolemia, atherosclerosis and diabetes (Govers and Rabelink, 2001; Vallance and Chan, 2001; Maxwell, 2002). Circulating effectors, such as bradykinin, bind to receptors on the luminal surface of endothelial cells, signaling the transient release of NO to the adjacent smooth muscle layer and resulting in relaxation of the vessel wall. The signal for eNOS activation is a transient increase in intracellular calcium, which activates the enzyme through binding of a calcium–calmodulin complex (Ca–Cam). Endothelial NOS activation also occurs in response to shear stress (Govers and Rabelink, 2001; Maxwell, 2002). Consistent with the important physiological roles of eNOS, the enzyme appears to be subject to multiple modes of regulation, in addition to primary regulation through reversible Ca–Cam binding and activation. These include reversible phosphorylation and palmitoylation, substrate and cofactor availability, dimerization of enzyme subunits, intracellular translocation and protein–protein interactions (Govers and Rabelink, 2001). Several of these potential modes of regulation appear to be interrelated. As a component of caveolae, a subcompartment of the plasma membrane that serves to sequester proteins involved in cell signaling, eNOS may transiently interact with several different caveolar components. Previous work from several different laboratories has suggested that a diverse group of proteins, including calmodulin, caveolin-1, bradykinin B2 receptor, heat shock protein 90, argininosuccinate synthase (AS), argininosuccinate lyase (AL), Raf-1, Akt, extracellular signal-related kinase, 2083 The Journal of Experimental Biology 206, 2083-2087 © 2003 The Company of Biologists Ltd doi:10.1242/jeb.00361
منابع مشابه
EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملNitric oxide and the bioactivities
Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...
متن کاملNitric oxide and the bioactivities
Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...
متن کاملComputational Prediction of the Effects of Single Nucleotide Polymorphisms of the Gene Encoding Human Endothelial Nitric Oxide Synthase
ABSTRACT Background and Objective: Genetic variations in the gene encoding endothelial nitric oxide synthase (eNOS) enzyme affect the susceptibility to cardiovascular disease. Identification of the way these changes affect eNOS structure and function in laboratory conditions is difficult and time-consuming. Thus, it seems essential to ...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کامل